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‘‘Lattice-free’’ simulations of topological defect formation
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We examine simulations of the formation of domain walls, cosmic strings, and monopoles on a cubic lattice,
in which the topological defects are assumed to lie at the zeros of a piecewise constant 1, 2, or 3 component
Gaussian random field, respectively. We derive analytic expressions for the corresponding topological defect
densities in the continuum limit and show that they fail to agree with simulation results, even when the fields
are smoothed on small scales to eliminate lattice effects. We demonstrate that this discrepancy, which is related
to a classic geometric fallacy, is due to the anisotropy of the cubic lattice, which cannot be eliminated by
smoothing. This problem can be resolved by linearly interpolating the field values on the lattice, which gives
results in good agreement with the continuum predictions. We use this procedure to obtain a lattice-free
estimate~for Gaussian smoothing! of the fraction of the total length of string in the form of infinite strings:
f `50.71660.015.@S0556-2821~98!03122-1#

PACS number~s!: 98.80.Cq, 11.27.1d
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I. INTRODUCTION

Topological defects arise when the manifold of the deg
erate vacuum states of a field is not simply connected.~See
Ref. @1# for a review.! In the simplest set of models, doma
walls arise from a one-component field with two degener
vacuum states, cosmic strings correspond to a t
component field in which the degenerate vacua form a ci
in the field space, and monopoles arise from a thr
component field for which the degenerate vacua lie on
surface of a sphere.

The formation of topological defects can be simulated
laying down the appropriate field on a cubic lattice and id
tifying the corresponding topological defects with zeros
the field. Although the most effort has gone toward simu
tions of cosmic string formation@2–9#, similar investigations
have also been undertaken for the study of domain w
@10–12# and monopoles@13,14#.

In this paper, we point out a potential problem for som
such lattice-based simulations. Even when the fields wh
give rise to the defects are smoothed on a scale larger
the lattice spacing~as in Ref. @8#!, residual lattice effects
remain. These are due to the fact that a continuous sur
cannot be distorted to lie on the edges of a lattice with
also distorting the area of the surface.

In the next section, we discuss our topological def
simulations, and we provide analytic expressions for the d
sity of walls, strings, and monopoles. These analytic pred
tions are compared with the results of our numerical simu
tions, and they are found to disagree. In Sec. III, a second
of analytic predictions, which does agree with the simu
tions, is presented, and we explain the origin of the discr
ancy, which is closely related to a classic geometric falla
A second set of simulations using linear interpolation of
fields is presented, and these are shown to agree with
lytic continuum predictions. The implications are discuss
0556-2821/98/58~10!/103501~8!/$15.00 58 1035
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in Sec. IV. Our interpolation scheme produces a lattice-f
estimate for the fraction of string length in infinite string
~with Gaussian smoothing!: f `50.71660.015.

II. PROBLEM

In an earlier paper@8# we simulated the formation of cos
mic strings from correlated fields on a cubic lattice, smoo
ing the field on small scales to eliminate lattice effects. H
we extend these simulations to domain walls and monopo

Consider first the case of domain walls. We can assig
real scalar fieldf to each of the cells of a cubic lattice, an
the location of the domain wall is then identified with fac
of the lattice across which the value of the field crosses z
To simulate cosmic strings rather than domain walls, we
a complex scalar field or, equivalently, a two-component r
field f. Then the zeros off will lie on the edges of the
lattice, which we then identify as the location of the string
Finally, to simulate monopoles, we takef to be a three-
component real field; the zeros off then form a set of dis-
connected points lying on the vertices of the lattice; t
gives the location of the corresponding monopoles.

Following the procedure in Ref.@8#, we takef to be a
Gaussian random field. Then we can exploit the fact that
components of an N-component Gaussian field
f1 ,f2 , . . . ,fN , are themselves independent real Gauss
fields. Hence, our model for cosmic strings is equivalent
using two independent real Gaussian fields~which can be
taken to bef1 andf2). The zeros of these two fields form
two independent sets of surfaces, and the strings lie at
intersection of these surfaces. Similarly, our field configu
tion for monopoles can be treated as three independent
Gaussian fields,f1 , f2 , andf3 . The zeros of these thre
fields form three sets of surfaces, and their intersection
set of disconnected points, giving the location of the mon
poles.
© 1998 The American Physical Society01-1
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ROBERT J. SCHERRER AND ALEXANDER VILENKIN PHYSICAL REVIEW D58 103501
A Gaussian field is completely determined by its pow
spectrumP(k), defined by

P~k!5E d3r eik•r^f~x!•f~x1r !&. ~1!

Following the procedure in Ref.@8#, we assume a power-law
power spectrum of the form

P~k!}kn. ~2!

Note that this is equivalent to taking each of the compone
f i to have a power spectrum given by Eq.~2!. We add a
backround non-zero mean field to the box to simulate
effect of long-wavelength modes~see Ref.@8# for the de-
tails!. We also smooth the fieldf on small scales with a
Gaussian window function

W~r !5exp~2r 2/2r 0
2!, ~3!

where the smoothed fieldfs(x) is the convolution off(x)
with W(r ):

fs~x!5E d3r f~x1r !W~r !. ~4!

This Gaussian smoothing changes the power spectrum
P(k) to Ps(k), given by

Ps~k!5P~k!e2k2r 0
2
. ~5!

@Again, Eq.~4! is equivalent to smoothing each of the com
ponentsf i with W(r ), and Eq.~5! can similarly be applied
separately to the power spectrum for each component.# The
effect of smoothing is to reduce the magnitude of the sm
scale fluctuations by averaging them out over the wind
function. One might hope that ifr 0 is taken to be larger than
the lattice spacing, lattice effects can be reduced or eli
nated entirely. We will see that this is not the case.

Given this model, it is possible to calculate the topolo
cal defect density analytically. Our starting point is a set
results due to Ryden@15# concerning the properties of leve
crossing surfaces in Gaussian random fields. Consider a
Gaussian field with arbitrary power spectrumP(k) and rms
fluctuations. The regions of space for which the field h
the valuens form a set of two-dimensional surfaces. Ryd
@15# defined the quantityN3(n) to be the mean area per un
volume of these surfaces. The intersection of this set of
faces with an arbitrary plane produces a set of curves, w
mean lengthN2(n) per unit area of the plane. Finally, we ca
consider the intersection of this set of surfaces with an a
trary straight line; the quantityN1(n) is the number of inter-
sections of this line~per unit length of the line! with the set
of surfaces. Ryden showed that@15#

N3~n!5
4

p
N2~n!52N1~n!, ~6!

where
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N1~n!5
1

pA3
^k2&1/2e2n2/2 ~7!

and the value of̂k2& depends on the power spectrum as

^k2&5

E P~k!k4dk

E P~k!k2dk

. ~8!

These results can be used to derive analytic express
for the topological defect density in our model. Consider fi
the area per unit volume, (A/V), for domain walls. In terms
of the Ryden notation, it is obvious that

~A/V!5N3~0!5
2

pA3
^k2&1/2. ~9!

~Although we confine our attention to unbiased field config
rations, i.e., configurations for which positive and negat
values off i are equally likely, so thatn50, our results can
easily be generalized to biased configurations by takin
nonzero value forn.) Now consider the case of cosm
strings. The strings can be considered to lie at the inters
tion of two sets ofn50 surfaces, corresponding tof150
and f250, respectively. Suppose that we are sitting on
surface corresponding tof150, with area per unit volume
N3(0), and wewish to calculate the length per unit area
the intersection of this surface with thef250 surface. Al-
though thef150 surface is highly irregular, if we take
small enough patch, it will be locally flat~assuming the field
is smoothed on small scales!, so that the length per area o
this intersection is justN2(0). Hence, the total length pe
unit area, (L/V), of cosmic string is just

~L/V!5N2~0!N3~0!5
1

3p
^k2&. ~10!

Note that this result agrees exactly with the analytic expr
sion for (L/V) derived by Vishniacet al. @16# using different
methods. Finally, we consider the case of monopoles, wh
are taken to lie at the intersection of the surfaces correspo
ing to the zeros of three independent Gaussian fields.
intersection of two of these sets of surfaces (f150 andf2
50) defines a set of curves with length per unit volum
given by Eq.~10!. While these curves are quite irregula
they are locally straight on small enough scales~assuming
the fields are smoothed on small scales!, so that their inter-
section with the third set of surfaces (f350) givesN1(0) as
the number of intersections per unit length of the curv
Then the monopole density per unit volume, (N/V), is

~N/V!5N1~0!N2~0!N3~0!5
1

33/2p2
^k2&3/2. ~11!

Although our results are applicable to arbitrary pow
spectra, for definiteness we now restrict our attention to
casen50, which corresponds to uncorrelated fields. This
1-2
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‘‘LATTICE-FREE’’ SIMULATIONS OF TOPOLOGICAL . . . PHYSICAL REVIEW D58 103501
the most physically relevant case, because a causal p
transition will lead to fields which are uncorrelated on sca
larger than the horizon, while the smoothing length can
identified with the scale over which the field tends to
correlated. Forn50 with Gaussian smoothing, Eqs.~2!, ~5!,
and ~8! yield

^k2&5
3

2r 0
2 . ~12!

Substituting this result into Eqs.~9!, ~10! and~11!, we obtain

~A/V!5A 2

pr 0
~walls!,

~L/V!5
1

2pr 0
2 ~strings!,

~N/V!5
1

23/2p2r 0
3 ~monopoles!.

~13!

We now compare these results to numerical simulatio
Using the procedure outlined above, we have simulated
formation of domain walls, cosmic strings, and monopo
on a 1283 lattice, using 1, 2, and 3 independent Gauss
random fields, respectively. For the case of cosmic strin
we use two different cubic lattices, staggered with respec
each other by 1/2 of a lattice spacing in thex, y, and z
directions~i.e., the vertices of one lattice lie at the centers
the cells of the other lattice!. We then set down independe
Gaussian fields on each lattice, and the strings are taken
at the intersection of the zeros of the two fields. For mo
poles, we take three different cubic lattices, staggered w
respect to each other by 1/3 of a lattice spacing in thex, y,
and z directions, and the monopoles are taken to lie at
intersection of the three surfaces defined byf150, f250,
andf350.

In each case, we produce 4 different realizations to ob
a mean defect number density and standard deviation. In
1, we show the domain wall area per unit volume, (A/V), in
our simulations as a function of smoothing lengthr 0 . In Fig.
2 we give the string length per unit volume, (L/V), as a
function of r 0 , and in Fig. 3 we give the number of mono
poles per unit volume, (N/V), as a function ofr 0 . ~Here we
make no distinction between monopoles and antimonopo
although we will do so later.! Also in these figures, we show
as solid lines the theoretical values for (A/V), (L/V), and
(N/V) from Eqs.~13!. The disagreement is obvious. Clear
the lattice-based simulations fail to produce the true c
tinuum number densities for topological defects.

III. SOLUTION

Although our analytic expressions for the topological d
fect densities given in the previous section fail to agree w
the results of our numerical simulations, we can use a dif
ent set of arguments to derive ‘‘lattice-based’’ analytic e
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pressions which do agree with the lattice simulations. C
sider first the case of domain walls, and consider a sin
face between two cells on the lattice. This face will be occ
pied by a domain wall if the cell on one side of it hasf
.0 and the other cell hasf,0, or vice versa. This occupa
tion probability,pocc , can be derived from Sheppard’s the

FIG. 1. The total domain wall area per unit volume, (A/V),
multiplied by the smoothing lengthr 0 , as a function ofr 0 , for
Gaussian smoothing, wherer 0 is measured in units of the lattic
spacing. The solid line gives the analytic prediction for (A/V)r 0 for
this model in the continuum limit. The dotted line is the lattic
based analytic prediction.

FIG. 2. The total string length per unit volume, (L/V), multi-
plied by the square of the smoothing lengthr 0 , as a function ofr 0 ,
for Gaussian smoothing, wherer 0 is measured in units of the lattic
spacing. The solid line gives the analytic prediction for (L/V)r 0

2 for
this model in the continuum limit. The dotted line is the lattic
based analytic prediction.
1-3
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ROBERT J. SCHERRER AND ALEXANDER VILENKIN PHYSICAL REVIEW D58 103501
rem @17# whenf is a Gaussian field. We obtain

pocc5
1

p
cos21F j~r !

j~0!G , ~14!

wherer is the spacing between the lattice cells, andj is the
two-point correlation function, which is the Fourier tran
form of the power spectrum. For ann50 power spectrum
smoothed with our Gaussian window function, we ha
j(r )/j(0)5exp(2r2/4r 0

2), and

pocc5
1

p
cos21@e2r 2/4r 0

2
#. ~15!

For r 0@r ~i.e., when the smoothing length is large compar
to the lattice spacing! this reduces to

pocc5
1

pA2r 0

. ~16!

This result can be used to derive not only the domain w
density, but the string and monopole densities as well.
the case of domain walls, each cell is bounded by six fa
each of which is shared between two cells, so that the t
area per unit volume is (A/V)53pocc . In our string simula-
tion, a string forms at the intersection of two different latti
faces, where the two lattices are staggered by half a la
spacing. For a single cell on one lattice, there are 24 s
possible intersections, each with lengthr /2 ~where r is the
lattice spacing! and each shared by two cells. Hence, the to
length per unit volume is (L/V)56pocc

2 . Finally, for the
monopoles, a monopole forms at the intersection of th

FIG. 3. The total number of monopoles per unit volume, (N/V),
multiplied by the cube of the smoothing lengthr 0 , as a function of
r 0 , for Gaussian smoothing, wherer 0 is measured in units of the
lattice spacing. The solid line gives the analytic prediction
(N/V)r 0

3 for this model in the continuum limit. The dotted line
the lattice-based analytic prediction.
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lattice faces on three different staggered lattices. On a sin
cell of one lattice, there are 12 possible intersection si
each of which is shared between two cells. Thus, (N/V)
56pocc

3 .
Combining these results with the value forpocc given in

Eq. ~16!, we obtain the following values for the topologica
defect densities:

~A/V! lat5
3

pA2r 0

~walls!,

~L/V! lat5
3

p2r 0
2 ~strings!,

~N/V! lat5
3

p3A2r 0
3 ~monopoles!,

~17!

where thelat subscript denotes the fact that this analy
calculation is lattice-based, rather than derived from a c
tinuum calculation.

These values for the defect densities are shown in F
1–3 as dotted lines. Asr 0 becomes sufficiently large com
pared to the lattice spacing, the numerical results converg
a defect density in good agreement with Eqs.~17!, although
the fluctuations between realizations also increase withr 0 .
Clearly, our results in Eqs.~17! give the correct defect den
sities to compare with our lattice-based simulations.

However, this leaves an embarrassing question: why
our simulations fail to agree with the continuum calculatio
given in Eqs.~13! and in Ref.@16#? Even without reference
to the numerical simulations, we have two predictions for
defect densities, i.e. Eqs.~13! and~17!, which disagree with
each other. What is the origin and significance of this d
crepancy?

In fact, the problem here is related to a classic geome
fallacy @18#. Consider an isosceles right triangle with sides
unit length. The hypotenuse can be represented as a seri
steps~Fig. 4!. The length of the hypotenuse, represented
this way, is 2. As the number of stepsN is increased, this
length remains 2, even in the limit whereN→`. The funda-
mental problem is that the hypotenuse is not theN→` limit
of the zigzag curve. Similarly, it is impossible to represe
accurately a smooth surface or curve on a cubic latt
While smoothing increases the length scale of curvature
the smooth surface~or, as in Fig. 4, decreases the effecti
step size!, the lattice representation of the surface nev
reaches the continuum limit.

Armed with this information, we can now calculate th
expected ratio of the continuum value for (A/V) given in
Eqs.~13! and the lattice value in Eqs.~17!. Suppose that we
represent a locally flat surface with areaA and normal vector
n on a cubic lattice. The areaA then forms a triangular face
of a pyramid with sides of lengthx, y, andz. The volume of
the pyramid isV5 1

3 An5 1
6 xyz, so thatA5 1

2 xyz/n. The lat-
tice value for this surface area is justAlat5

1
2 (xy1xz

1yz). Then (A/V) lat /(A/V) is just the mean value of the
ratio of Alat to A, which is

r

1-4
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‘‘LATTICE-FREE’’ SIMULATIONS OF TOPOLOGICAL . . . PHYSICAL REVIEW D58 103501
~A/V! lat

~A/V!
5 K Alat

A L
5K 1

2 ~xy1yz1xz!

1
2 xyz/n

L
5^cosa1cosb1cosg&, ~18!

wherea, b, andg are the angles betweenn and thex, y, and
z axes. Sincen is distributed isotropically, we havêcosa&
5^cosb&5^cosg&51/2, and (A/V) lat /(A/V)53/2, which is
exactly the value obtained by comparing Eqs.~13! to Eqs.
~17!.

In fact, the solution to this problem for the case of doma
walls was noted by Presset al. @10# and has been used in a
domain wall simulations@10–12#. In the procedure of Pres
et al., the area of a domain wall is simply multiplied by th
factor 1/(ucosau1ucosbu1ucosgu), resulting in the correct con
tinuum value for the domain wall area.

A similar weighting procedure cannot be applied in
straightforward way to simulations of cosmic strings a
monopoles. For strings, a similar calculation yiel
(L/V) lat /(L/V)5^(x1y1z)/Ax21y21z2&5 3

2 , while the
actual ratio from Eqs.~13! and ~17! is (L/V) lat /(L/V)
56/p51.91, which is slightly larger. For monopoles, o
geometrical argument fails completely. There is no obvio
reason that (N/V) should be any different in a continuum o
lattice calculation, since the monopoles are geometr
points. Nonetheless, Eqs. ~13! and ~17! yield
(N/V) lat /(N/V)56/p, as in the case of strings.

This secondary lattice dependence is a result of the wa
which we have simulated the string and monopole formati

FIG. 4. An illustration of a classic geometric fallacy: as t
number of steps goes to infinity, the length of the hypotenuse
mains at 2, rather than approaching the correct value of 21/2.
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Both the strings and monopoles are treated as arising f
intersections of the surfaces defined by the zeros of 2 o
independent Gaussian fields. Even when smoothed, t
surfaces retain a residual jaggedness, as we have alr
emphasized. The intersection of two such jagged surfa
produces spurious additional intersections which would
be present in the continuum limit. As an example, consi
the hypotenuse in Fig. 4. When represented as a serie
steps, two such lines can have a large number of inter
tions, even when the two lines are parallel, while in the co
tinuum limit, there would be at most one intersection, a
none in the case where the lines were parallel. This seco
ary effect does not enter into the domain wall calculatio
since the domain walls arise from the zeros of a single fie

This problem can be resolved by linearly interpolating t
values of each field on the lattice, effectively representing
zeros of the field as polyhedral, rather than cubic, surfac
We have tested such a procedure for the case of monop
We derive an equation for the value off for each of the
three fields in each cubic cell by linearly interpolating on t
values of each field at the four points (0,0,0), (1,0,0
(0,1,0), and (0,0,1). We then place a monopole in the ce
the f50 planes of the three fields intersect inside the c
The results are shown in Fig. 5. They agree extremely w
with the continuum predictions, despite the fact that our l
ear interpolation is still an approximation to the true co
tinuum field.

This procedure can also be used for cosmic strings. In
case, we take the values of our two fields to lie on the v
tices ~rather than inside the cells! of the cubic lattice. For
each face of the cubic lattice, and for each of the two fiel
we use bilinear interpolation@19# on the four values of the
field bounding that face to calculate the location of the ze
of the field on that face. This gives the intersection~if any! of
the two surfacesf150 and f250 with the given lattice
face. If both surfaces do intersect a given lattice face, t

e-

FIG. 5. As in Fig. 3, but with linear interpolation on the thre
fields used to determine the monopole positions.
1-5
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ROBERT J. SCHERRER AND ALEXANDER VILENKIN PHYSICAL REVIEW D58 103501
we obtain two curves~one for each field! which give the
intersection of thef150 andf250 surfaces of that field
with the lattice face. The intersection of these two curv
gives the point at which a string passes through that fac
the cubic lattice. We then connect these intersection po
with straight segments~now no longer parallel to the lattic
edges! to obtain the string network.~The general expressio
for the location of a singlef50 curve on a lattice face
obtained from bilinear interpolation, isaxy1bx1cy1d
50, wherea–d are constants and the face is taken to lie
the x-y plane. Hence, this procedure can produce two in
sections of thef150 andf250 curves on a single lattice
face, corresponding to two strings passing through a sin
face of the lattice. In this case we treat the string as a sin
small loop with length equal to twice the distance betwe
the intersection points. Such tiny loops become relativ
less important as the smoothing length increases.! The result-
ing values for (L/V) as a function of smoothing length ar
displayed in Fig. 6. Again, agreement with our continuu
predictions is excellent.

We can use this linearly interpolated string network
calculate a ‘‘lattice-free’’ estimate off ` , the fraction of
string length in the form of infinite strings, which we defin
as in Ref.@8#, to be strings which cross the entire simulati
volume in either thex, y, or z direction. We have calculate
f ` as a function of smoothing length for our linearly inte
polated string simulations. The results are given in Fig. 7

To obtain an estimate of the lattice-free value off ` , we
want to choose values ofr 0 which are large enough com
pared to the lattice spacing to eliminate lattice effects,
small enough compared to the total box size to avoid la
fluctuations from one run to the next. The results shown
Fig. 6 suggest that the range 3<r 0<7.5 should be suitable
When we perform a weighted average of the values off ` in
this range, we obtainf `50.71660.015. This result repre
sents a true lattice-free estimate off ` , but we do expect it to

FIG. 6. As in Fig. 2, but with linear interpolation on the tw
fields used to determine the cosmic string positions.
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depend on the actual window function used for smoothi
Our lattice-free results are strikingly similar to earlier resu
obtained with Gaussian smoothing in a simulation wh
strings were constrained to lie on a cubic lattice:f `50.71
60.01 @8#. It would appear thatf ` , unlike (L/V), is not
much affected by the use of a cubic lattice.

For the case of monopoles, one interpretation of our
sults is that our simpleminded lattice simulation leads to
formation of spurious closely spaced monopo
antimonopole pairs. To test this hypothesis, we must dis
guish between monopoles and antimonopoles in the sim
tion. Consider first the case where thef150 surface lies in
they-z plane, thef250 surface lies in thex-z plane, and the
f350 surface lies in thex-y plane, so that the only non-zer
derivatives of the field aref1,x , f2,y andf3,z . In this case,
we define zeros of the three fields to be monopoles
f1,xf2,yf3,z.0, and antimonopoles if this product is neg
tive. For other field configurations, the sign of the product
the derivatives which corresponds to a monopole chan
each time we alter the direction of one pair of zeros. F
instance, if thef150 surface lies in thex-z plane and the
f250 surface lies in they-z plane, but thef350 surface
remains in thex-z plane, thenf1,yf2,xf3,z is now negative
for monopoles and positive for antimonopoles. Similarly,
we now permute the directions of the zeros of thef2 andf3
fields, thenf1,yf2,zf3,x is positive for monopoles and nega
tive for antimonopoles.

Using this definition of monopoles and antimonopoles,
have checked the consequences of allowing closely sepa
monopole-antimonopole pairs in our simulation to annihila
We use the same monopole simulation as in Fig. 3, but n
for each monopole in the simulation, we check for the ex
tence of any antimonopoles within an ‘‘annihilation di
tance’’ r A . If an antimonopole is found within this distanc

FIG. 7. The fraction of total string length in the form of infinit
strings, f ` , as a function of smoothing length,r 0 , for Gaussian
smoothing, where linear interpolation on the two fields is used
determine the cosmic string positions.
1-6
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both the monopole and antimonopole are removed from
simulation. Thus, in our final configuration, all remainin
monopoles are separated from antimonopoles by a minim
distance ofr A . We have fixed the smoothing lengthr 0 and
calculated the monopole1antimonopole number densit
(N/V) as a function of the annihilation distancer A . The
results are shown in Figs. 8 and 9 for smoothing lengths o
and 8 lattice spacings, respectively. The monopole den
(N/V)r 0

3 decreases as a function ofr A , and it must obviously
go to zero asr A reaches the size of the simulation volum
However, it appears that asr A approachesr 0 , a plateau
value for (N/V)r 0

3 is reached. Moreover, the plateau value
(N/V)r 0

3 lies at the continuum prediction of Eqs.~13!. The
statistics are rather poor, but our results do suggest that
interpetation of the spurious monopoles in the lattice sim
lations is that such monopoles are produced as clo
spaced monopole-antimonopole pairs.

IV. DISCUSSION

Our results indicate that lattice simulations for the form
tion of topological defects must be used with some cauti
Even when the Gaussian fields used in these simulations
smoothed to reduce lattice effects on small scales, a resi
lattice dependence remains. Another way to express this
sult is to note that smoothing eliminates the small-scale
homogeneity introduced by using a lattice, but it cann
eliminate the anisotropy. Strings, for example, simulated
a cubic lattice are required to lie only in thex, y, or z direc-
tions, while a genuine continuum simulation would allow
arbitrary direction for the string segments.

For the case of domain walls, a simple multiplicative fa

FIG. 8. The total number of monopoles1antimonopoles per uni
volume, (N/V), multiplied by the cube of the smoothing lengthr 0 ,
as a function of the ‘‘annihilation distance’’r A , where monopole-
antimonopole pairs separated by a distance less thanr A have been
removed from the simulation, andr 0 is fixed at 6 lattice spacings
The solid line gives the analytic prediction for (N/V)r 0

3 in the con-
tinuum limit. The dotted line is the lattice-based analytic predicti
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tor which depends on the direction of the domain wall can
used to eliminate this problem; all domain wall simulatio
have used such a factor@10–12#. For strings, the correc
multiplicative factor does not amount to simply averagi
over the directions for a straight string: in the lattice simu
tions there is residual small-scale structure along the str
and probably an accompanying distribution of tiny loops~of
order the lattice spacing!. These effects change the multipl
cative factor from 1.5~its value when only anisotropy is
taken into account! to 1.91, but they should not affect th
length distribution of loops~except for the smallest loops!. In
practice, nearly all previous studies of cosmic strings ha
used a simple lattice simulation of the kind described h
@2–8#, as have some monopole simulations@13# ~although
see Ref.@14# for a continuum field treatment of monopoles!.

For cosmic strings and monopoles, the problem can
solved by linearly interpolating the values of the field on t
lattice. This procedure yields the correct continuum value
the monopole and string densities; for the case of monopo
a similar result can be achieved in a simple minded latt
simulation by eliminating close pairs of monopoles. For t
case of cosmic strings, this interpolation scheme produc
truly lattice-free estimate of the total string length in th
form of infinite strings: f `50.71660.015. This is nearly
identical to the value obtained from a simple lattice simu
tion ~with Gaussian smoothing! where the strings were con
strained to lie on the edges of the lattice@8#. Apparentlyf ` is
much less sensitive to lattice effects than is the total str
density. This is not surprising, since the effect of the cu
lattice is to multiply the string density by a geometric facto
if this factor is the same for both closed loops and infin
strings, thenf ` is unaffected. However, even in these lattic
free simulations, we expect the value off ` to depend on the
window function used for smoothing~as in reference@8#!.

This linear interpolation procedure can also be exten
to domain walls, providing an alternative to the weightin
factor used in Refs.@10–12#. In practice, these two method

FIG. 9. As in Fig. 8, withr 058 lattice spacings.

.
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should give nearly identical results for any domain w
quantities of interest.
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