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We examine simulations of the formation of domain walls, cosmic strings, and monopoles on a cubic lattice,
in which the topological defects are assumed to lie at the zeros of a piecewise constant 1, 2, or 3 component
Gaussian random field, respectively. We derive analytic expressions for the corresponding topological defect
densities in the continuum limit and show that they fail to agree with simulation results, even when the fields
are smoothed on small scales to eliminate lattice effects. We demonstrate that this discrepancy, which is related
to a classic geometric fallacy, is due to the anisotropy of the cubic lattice, which cannot be eliminated by
smoothing. This problem can be resolved by linearly interpolating the field values on the lattice, which gives
results in good agreement with the continuum predictions. We use this procedure to obtain a lattice-free
estimate(for Gaussian smoothingf the fraction of the total length of string in the form of infinite strings:
f.=0.716+0.015.[S0556-282(98)03122-]

PACS numbegps): 98.80.Cq, 11.2%:d

[. INTRODUCTION in Sec. IV. Our interpolation scheme produces a lattice-free
estimate for the fraction of string length in infinite strings

Topological defects arise when the manifold of the degen{with Gaussian smoothingf..=0.716+0.015.
erate vacuum states of a field is not simply connec{8de
Ref.[1] for a review) In the simplest set of models, domain Il. PROBLEM
walls arise from a one-component field with two degenerate
vacuum states, cosmic strings correspond to a two- Inan earlier papef8] we simulated the formation of cos-
component field in which the degenerate vacua form a circlgnic strings from correlated fields on a cubic lattice, smooth-
in the field space, and monopoles arise from a threeing the field on small scales to eliminate lattice effects. Here
component field for which the degenerate vacua lie on th&ve extend these simulations to domain walls and monopoles.
surface of a sphere. Consider first the case of domain walls. We can assign a

The formation of topological defects can be simulated byreal scalar fieldp to each of the cells of a cubic lattice, and
laying down the appropriate field on a cubic lattice and identhe location of the domain wall is then identified with faces
tifying the corresponding topological defects with zeros ofof the lattice across which the value of the field crosses zero.
the field. Although the most effort has gone toward simula-To simulate cosmic strings rather than domain walls, we use
tions of cosmic string formatiof2—9], similar investigations a complex scalar field or, equivalently, a two-component real
have also been undertaken for the study of domain wall§ield ¢. Then the zeros oty will lie on the edges of the
[10-12 and monopole§l3,14. lattice, which we then identify as the location of the strings.

In this paper, we point out a potential problem for someFinally, to simulate monopoles, we tak# to be a three-
such lattice-based simulations. Even when the fields whiclgomponent real field; the zeros ¢ then form a set of dis-
give rise to the defects are smoothed on a scale larger thaionnected points lying on the vertices of the lattice; this
the lattice spacindas in Ref.[8]), residual lattice effects gives the location of the corresponding monopoles.
remain. These are due to the fact that a continuous surface Following the procedure in Ref8], we taked to be a
cannot be distorted to lie on the edges of a lattice withouGaussian random field. Then we can exploit the fact that the
also distorting the area of the surface. components of an N-component Gaussian field,

In the next section, we discuss our topological defectp,,d-, ... ,pn, are themselves independent real Gaussian
simulations, and we provide analytic expressions for the derfields. Hence, our model for cosmic strings is equivalent to
sity of walls, strings, and monopoles. These analytic predictising two independent real Gaussian fie{ddich can be
tions are compared with the results of our numerical simulataken to be¢; and ¢,). The zeros of these two fields form
tions, and they are found to disagree. In Sec. lll, a second sévo independent sets of surfaces, and the strings lie at the
of analytic predictions, which does agree with the simula-intersection of these surfaces. Similarly, our field configura-
tions, is presented, and we explain the origin of the discreption for monopoles can be treated as three independent real
ancy, which is closely related to a classic geometric fallacyGaussian fields¢,, ¢,, and ¢3. The zeros of these three
A second set of simulations using linear interpolation of thefields form three sets of surfaces, and their intersection is a
fields is presented, and these are shown to agree with anset of disconnected points, giving the location of the mono-
lytic continuum predictions. The implications are discussedoles.
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A Gaussian field is completely determined by its power

1
spectrumP(k), defined by Ny(v)= —=(k?)Y%" V22 (7
™3

P(k)=f d3r ek T((x)- d(x+T1)). (1)  and the value otk?) depends on the power spectrum as

Following the procedure in Reff8], we assume a power-law f P(k)k*dk
power spectrum of the form (k?)= ) (8)

2
P(K) K™ @ f Plok dk

Note that this is equivalent to taking each of the components These results can be used to derive analytic expressions
backround non-zero mean field to the box to simulate thdéhe area per unit volumeA(V), for domain walls. In terms
effect of long-wavelength modeisee Ref.[8] for the de-  ©Of the Ryden notation, it is obvious that
tails). We also smooth the fieldd on small scales with a )
Gaussian window function
(AIV)=N3(0)= —=(k*)"2 ©)
™3
(Although we confine our attention to unbiased field configu-
where the smoothed fielgh(x) is the convolution ofé(x) rations, i.e., configurations for which positive and negative
with W(r): values of¢; are equally likely, so that=0, our results can
easily be generalized to biased configurations by taking a
I nonzero value forv.) Now consider the case of cosmic
¢S(X)_J d*r (x+r)W(r). ) strings. The strings can be considered to lie at the intersec-
tion of two sets ofv=0 surfaces, corresponding tb; =0
This Gaussian smoothing changes the power spectrum froend ¢,=0, respectively. Suppose that we are sitting on a

W(r)=exp —r?/2r3), 3)

P(k) to P4(k), given by surface corresponding t¢,=0, with area per unit volume
, N3(0), and wewish to calculate the length per unit area of
ps(k):p(k)e*szo_ (50  the intersection of this surface with thi,=0 surface. Al-

though theg,=0 surface is highly irregular, if we take a
[Again, Eq.(4) is equivalent to smoothing each of the com- small enough patch, it will be locally flaassuming the field
ponentse; with W(r), and Eq.(5) can similarly be applied is smoothed on small scaleso that the length per area of
separately to the power spectrum for each compoh&he  this intersection is jusN,(0). Hence, the total length per
effect of smoothing is to reduce the magnitude of the smallunit area, [/V), of cosmic string is just
scale fluctuations by averaging them out over the window
function. One might hope that if, is taken to be larger than
the lattice spacing, lattice effects can be reduced or elimi-
nated entirely. We will see that this is not the case.

Given this model, it is possible to calculate the topologi-Note that this result agrees exactly with the analytic expres-
cal defect density analytically. Our starting point is a set ofsion for (L/V) derived by Vishnia@t al.[16] using different
results due to Rydefi5] concerning the properties of level- methods. Finally, we consider the case of monopoles, which
crossing surfaces in Gaussian random fields. Consider a reafe taken to lie at the intersection of the surfaces correspond-
Gaussian field with arbitrary power spectruik) and rms  ing to the zeros of three independent Gaussian fields. The
fluctuationo. The regions of space for which the field has intersection of two of these sets of surfacels €0 and ¢,
the valuevo form a set of two-dimensional surfaces. Ryden=0) defines a set of curves with length per unit volume
[15] defined the quantitiN;(») to be the mean area per unit given by Eq.(10). While these curves are quite irregular,
volume of these surfaces. The intersection of this set of sutthey are locally straight on small enough scalassuming
faces with an arbitrary plane produces a set of curves, witthe fields are smoothed on small scale® that their inter-
mean lengtiN,(») per unit area of the plane. Finally, we can section with the third set of surfaceg{=0) givesN;(0) as
consider the intersection of this set of surfaces with an arbithe number of intersections per unit length of the curves.
trary straight line; the quantiti,(») is the number of inter- Then the monopole density per unit volumal/y), is
sections of this linéper unit length of the linewith the set
of surfaces. Ryden showed tHdb5)]

1
(L/V)=N3(0)N3(0) = 3—(k?). (10

(N/V)=N3(0)N,(0)N5(0)= (k3% (11

33/2772
4
Na(v)= - Na(#)=2Na (), ©®) Although our results are applicable to arbitrary power
spectra, for definiteness we now restrict our attention to the
where casen=0, which corresponds to uncorrelated fields. This is
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the most physically relevant case, because a causal phase L T8 T oo o o s s s e T B B L
transition will lead to fields which are uncorrelated on scales i T
larger than the horizon, while the smoothing length can be i i
identified with the scale over which the field tends to be B 4
correlated. Fon=0 with Gaussian smoothing, Eq®), (5), 0.7 - i %¥%$ _
and(8) yield e #xx’%&f%£¥ % ..... i
3 oy ¢ T
k%)= —. 12 - T
LR 2% el .
- . . . <t I i
Substituting this result into Eq§9), (10) and(11), we obtain ~ - 1
_.* -
2 05 .
(AIV)=\/— (walls), T 4
’7Tr0
(L/V)= _2 (Strlngs, 0 4 i 1 1 1 | 1 1 1 I 1 1 1 I 1 1 ] I 1 1 1 I ]
27 o 2 4 6 8 10
L
(N/V)= T35 5.3 (monopoles. FIG. 1. The total domain wall area per unit volumey/Y),
275wy multiplied by the smoothing lengthy, as a function ofry, for

13 Gaussian smoothing, wherg is measured in units of the lattice

h | ical simulati spacing. The solid line gives the analytic prediction f&r\)r for
We now compare these results to numerical simu altlons'chis model in the continuum limit. The dotted line is the lattice-

Using the procedure outlined above, we have simulated thg,gaq analytic prediction.
formation of domain walls, cosmic strings, and monopoles

on a 128 lattice, using 1, 2, and 3 independent Gaussiaryressions which do agree with the lattice simulations. Con-
random fields, respectively. For the case of cosmic stringSsiger first the case of domain walls, and consider a single
we use two different cubic lattices, staggered with respect t@yce petween two cells on the lattice. This face will be occu-
each other by 1/2 of a lattice spacing in they, andz  hiaq phy 4 domain wall if the cell on one side of it hds
directions(i.e., the vertices of one lattice lie at the centers of>0 and the other cell hag<0, or vice versa. This occupa-

the cells of the other lattigeWe then set down independent ion probabilit can be derived from Sheppard’s theo-
Gaussian fields on each lattice, and the strings are taken to en P ¥:Poce: PP

at the intersection of the zeros of the two fields. For mono-

. . . ) 0.4
poles, we take three different cubic lattices, staggered with L i
respect to each other by 1/3 of a lattice spacing inxhg - .
and z directions, and the monopoles are taken to lie at the r T

L LI} T 17T |1TI|||

intersection of the three surfaces defineddyy=0, ¢,=0, e TEF T E T
and ¢3=0. 03" LEEEESE XX¥£$ $X¥%—_

In each case, we produce 4 different realizations to obtain Lo g
a mean defect number density and standard deviation. In Fig. §o - .
1, we show the domain wall area per unit voluma/\), in —~ - 1
our simulations as a function of smoothing lenggh In Fig. i 0.2 ™ ]
2 we give the string length per unit volume./{/), as a =

function ofry, and in Fig. 3 we give the number of mono- - .
poles per unit volume,N/V), as a function of ;. (Here we B 1
make no distinction between monopoles and antimonopoles, 0.1
although we will do so later Also in these figures, we show

as solid lines the theoretical values fok/{), (L/V), and L b
(N/V) from Egs.(13). The disagreement is obvious. Clearly - .

the lattice-based simulations fail to produce the true con- 00 — ; — J} — é —— é =~ '1l0
tinuum number densities for topological defects. r,
IIl. SOLUTION FIG. 2. The total string length per unit volumd,/{/), multi-

plied by the square of the smoothing length as a function of ,
Although our analytic expressions for the topological de-for Gaussian smoothing, wherg is measured in units of the lattice
fect densities given in the previous section fail to agree withspacing. The solid line gives the analytic prediction fof\()r3 for
the results of our numerical simulations, we can use a differthis model in the continuum limit. The dotted line is the lattice-
ent set of arguments to derive “lattice-based” analytic ex-based analytic prediction.
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L e e L Iy e e lattice faces on three different staggered lattices. On a single
i cell of one lattice, there are 12 possible intersection sites,
1 each of which is shared between two cells. Thus/\()

B T :6ngC'

0.3 - Combining these results with the value fog.. given in

i Eq. (16), we obtain the following values for the topological
defect densities:

no -
-3 L |
Z 02 i (AIV) 2 (wally
i _ = walls),
5 i ] lat o 2I’0
- i 3 .
0.1 — (LIV)jar= 2,2 (strings,
- XX o
F=e 3 3
P N B B e (N/V)'atzws\/zrg (monopoles,
o 2 4 _6 8 10 17)

To

where thelat subscript denotes the fact that this analytic
calculation is lattice-based, rather than derived from a con-
tinuum calculation.

These values for the defect densities are shown in Figs.
1-3 as dotted lines. Asy becomes sufficiently large com-
pared to the lattice spacing, the numerical results converge to
a defect density in good agreement with E(s7), although
the fluctuations between realizations also increase wgth
Clearly, our results in Eqg17) give the correct defect den-
sities to compare with our lattice-based simulations.

, (14 However, this leaves an embarrassing question: why do
our simulations fail to agree with the continuum calculations
given in Egs.(13) and in Ref[16]? Even without reference

to the numerical simulations, we have two predictions for the

two-point correlation function, which is the Fourier trans- A : . ,
form of the power spectrum. For an=0 power spectrum defect densities, €. Eq(;lS)_a_nd(l?), \{vh|_c_h disagree W'th.
each other. What is the origin and significance of this dis-

smoothed with our Gaussian window function, we have

= 12412 crepancy?
¢(r)/£(0)=exp(-r74ry), and In fact, the problem here is related to a classic geometric

1 - fallacy[18]. Consider an isosceles right triangle with sides of
Poce=—C0S e "/40]. (15) unit length. The hypotenuse can be represented as a series of
m steps(Fig. 4). The length of the hypotenuse, represented in
. . . this way, is 2. As the number of stepéis increased, this
Forrg>r _(|.e., Whe_n th_e smoothing length is large Comloaredlength remains 2, even in the limit whelke—o. The funda-
to the lattice spacingthis reduces to mental problem is that the hypotenuse is notkhe « limit
of the zigzag curve. Similarly, it is impossible to represent
Poce= 1 _ (16) acc_urately a _smqoth surface or curve on a cubic lattice.
W\/Ero While smoothing increases the length scale of curvature for
the smooth surfacéor, as in Fig. 4, decreases the effective
This result can be used to derive not only the domain walktep sizg¢ the lattice representation of the surface never
density, but the string and monopole densities as well. Foreaches the continuum limit.
the case of domain walls, each cell is bounded by six faces, Armed with this information, we can now calculate the
each of which is shared between two cells, so that the totaxpected ratio of the continuum value fob/{V) given in
area per unit volume isA/V)=3p,cc- In our string simula-  Egs.(13) and the lattice value in Eg$l7). Suppose that we
tion, a string forms at the intersection of two different lattice represent a locally flat surface with ar&and normal vector
faces, where the two lattices are staggered by half a lattice on a cubic lattice. The areathen forms a triangular face
spacing. For a single cell on one lattice, there are 24 sucbf a pyramid with sides of lengtk, y, andz. The volume of
possible intersections, each with lengtt2 (wherer is the  the pyramid isv=3An=1xyz so thatA=ixyzn. The lat-
lattice spacingand each shared by two cells. Hence, the totatice value for this surface area is ju#f,=3(Xy+Xxz
length per unit volume isl(/V)=6p2... Finally, for the +yz). Then (A/V)5/(A/V) is just the mean value of the
monopoles, a monopole forms at the intersection of threeatio of A ,; to A, which is

FIG. 3. The total number of monopoles per unit volunié¢/Y),
multiplied by the cube of the smoothing length, as a function of
ro, for Gaussian smoothing, wherg is measured in units of the
lattice spacing. The solid line gives the analytic prediction for
(N/V)rg for this model in the continuum limit. The dotted line is
the lattice-based analytic prediction.

rem[17] when ¢ is a Gaussian field. We obtain

&(r)

£(0)

wherer is the spacing between the lattice cells, &nid the

1 —1
=—CO0S
pOCC T
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FIG. 5. As in Fig. 3, but with linear interpolation on the three

fields used to determine the monopole positions.
FIG. 4. An illustration of a classic geometric fallacy: as the

number of steps goes to infinity, the length of the hypotenuse reggth the strings and monopoles are treated as arising from

mains at 2, rather than approaching the correct value'@f 2 intersections of the surfaces defined by the zeros of 2 or 3
independent Gaussian fields. Even when smoothed, these
(AV)iat_ [ Alat surfaces retain a residual jaggedness, as we have already
(AIV) | A emphasized. The intersection of two such jagged surfaces

produces spurious additional intersections which would not
<%(xy+yz+xz)> be present in the_ continuum limit. As an example, con;ider
= the hypotenuse in Fig. 4. When represented as a series of
steps, two such lines can have a large number of intersec-
tions, even when the two lines are parallel, while in the con-
= (cosa+cosB+cosy), (18)  tinuum limit, there would be at most one intersection, and
none in the case where the lines were parallel. This second-
wherea, 8, andy are the angles betweerand thex,y, and  ary effect does not enter into the domain wall calculation,
z axes. Sincen is distributed isotropically, we hawgeosa)  since the domain walls arise from the zeros of a single field.
=(cosB)y=(cosy)=1/2, and @/V)5/(A/V)=23/2, which is This problem can be resolved by linearly interpolating the
exactly the value obtained by comparing E¢E3) to Egs.  values of each field on the lattice, effectively representing the
7). zeros of the field as polyhedral, rather than cubic, surfaces.
In fact, the solution to this problem for the case of domainWe have tested such a procedure for the case of monopoles.
walls was noted by Prest al.[10] and has been used in all We derive an equation for the value ¢f for each of the
domain wall simulationg10-12. In the procedure of Press three fields in each cubic cell by linearly interpolating on the
et al, the area of a domain wall is simply multiplied by the values of each field at the four points (0,0,0), (1,0,0),
factor 1/(cosa|+|cosB|+|cosy)), resulting in the correct con- (0,1,0), and (0,0,1). We then place a monopole in the cell if
tinuum value for the domain wall area. the ¢=0 planes of the three fields intersect inside the cell.
A similar weighting procedure cannot be applied in aThe results are shown in Fig. 5. They agree extremely well
straightforward way to simulations of cosmic strings andwith the continuum predictions, despite the fact that our lin-
monopoles. For strings, a similar calculation yieldsear interpolation is still an approximation to the true con-
(LIV) 10t [ (LIV)={(x+y+2)[ xP+y?+7?)=2, while the tinuum field.
actual ratio from Eqgs.(13) and (17) is (L/V)at/(L/V) This procedure can also be used for cosmic strings. In this
=6/7r=1.91, which is slightly larger. For monopoles, our case, we take the values of our two fields to lie on the ver-
geometrical argument fails completely. There is no obvioudices (rather than inside the cellof the cubic lattice. For
reason thatll/V) should be any different in a continuum or each face of the cubic lattice, and for each of the two fields,
lattice calculation, since the monopoles are geometricalve use bilinear interpolationl9] on the four values of the
points. Nonetheless, Egs.(13) and (17) vyield field bounding that face to calculate the location of the zeros
(N/V)2t/(N/V) =6/, as in the case of strings. of the field on that face. This gives the intersectirany) of
This secondary lattice dependence is a result of the way ithe two surfacesp;=0 and ¢,=0 with the given lattice
which we have simulated the string and monopole formationface. If both surfaces do intersect a given lattice face, then

3xyzn
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FIG. 6. As in Fig. 2, but with linear interpolation on the two  FIG. 7. The fraction of total string length in the form of infinite

fields used to determine the cosmic string positions. strings, f.., as a function of smoothing lengthg, for Gaussian
smoothing, where linear interpolation on the two fields is used to

we obtain two curvegone for each field which give the determine the cosmic string positions.
intersection of thegp;=0 and ¢,=0 surfaces of that field
with the lattice face. The intersection of these two curvesdepend on the actual window function used for smoothing.
gives the point at which a string passes through that face dDur lattice-free results are strikingly similar to earlier results
the cubic lattice. We then connect these intersection pointsbtained with Gaussian smoothing in a simulation where
with straight segment&ow no longer parallel to the lattice strings were constrained to lie on a cubic lattife=0.71
edge$ to obtain the string networKThe general expression +=0.01[8]. It would appear thaf.., unlike (L/V), is not
for the location of a singlep=0 curve on a lattice face, much affected by the use of a cubic lattice.
obtained from bilinear interpolation, iaxy+bx+cy+d For the case of monopoles, one interpretation of our re-
=0, wherea—d are constants and the face is taken to lie insults is that our simpleminded lattice simulation leads to the
the x-y plane. Hence, this procedure can produce two interformation of spurious closely spaced monopole-
sections of thep;=0 and¢$,=0 curves on a single lattice antimonopole pairs. To test this hypothesis, we must distin-
face, corresponding to two strings passing through a singlguish between monopoles and antimonopoles in the simula-
face of the lattice. In this case we treat the string as a singlgon. Consider first the case where tthg=0 surface lies in
small loop with length equal to twice the distance betweerthey-z plane, theg,=0 surface lies in th&-z plane, and the
the intersection points. Such tiny loops become relatively$;= 0 surface lies in the&-y plane, so that the only non-zero
less important as the smoothing length increasise result-  derivatives of the field are,, ¢,, and ¢3,. In this case,
ing values for L/V) as a function of smoothing length are we define zeros of the three fields to be monopoles if
displayed in Fig. 6. Again, agreement with our continuumd, ,¢,,#3,>0, and antimonopoles if this product is nega-
predictions is excellent. tive. For other field configurations, the sign of the product of

We can use this linearly interpolated string network tothe derivatives which corresponds to a monopole changes
calculate a “lattice-free” estimate of.,, the fraction of each time we alter the direction of one pair of zeros. For
string length in the form of infinite strings, which we define, instance, if the¢;=0 surface lies in the-z plane and the
as in Ref[8], to be strings which cross the entire simulation ¢,=0 surface lies in the/-z plane, but thep;=0 surface
volume in either the, y, or z direction. We have calculated remains in thex-z plane, theng, ¢, ,¢3, is now negative
f.. as a function of smoothing length for our linearly inter- for monopoles and positive for antimonopoles. Similarly, if
polated string simulations. The results are given in Fig. 7. we now permute the directions of the zeros of ¢#eand ¢

To obtain an estimate of the lattice-free valuefof, we fields, thend,, ¢, ,¢3 is positive for monopoles and nega-
want to choose values af; which are large enough com- tive for antimonopoles.
pared to the lattice spacing to eliminate lattice effects, but Using this definition of monopoles and antimonopoles, we
small enough compared to the total box size to avoid largéave checked the consequences of allowing closely separated
fluctuations from one run to the next. The results shown irmonopole-antimonopole pairs in our simulation to annihilate.
Fig. 6 suggest that the range<3,=<7.5 should be suitable. We use the same monopole simulation as in Fig. 3, but now
When we perform a weighted average of the values.oih ~ for each monopole in the simulation, we check for the exis-
this range, we obtairi,,=0.716+0.015. This result repre- tence of any antimonopoles within an “annihilation dis-
sents a true lattice-free estimatefof, but we do expectitto tance”r,. If an antimonopole is found within this distance,
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FIG. 8. The total number of monopoleantimonopoles per unit FIG. 9. As in Fig. 8, withr,=8 lattice spacings.

volume, (N/V), multiplied by the cube of the smoothing length

as a function of the "annihilation distancer , where monopole- tor which depends on the direction of the domain wall can be
antimonopole pairs separated by a distance lessthdrave been P

removed from the simulation, ang is fixed at 6 lattice spacings. used to eliminate this problem; all doma_ln wall simulations
The solid line gives the analytic prediction fak{V)r3 in the con- have used such a fact9l0-13. For strings, the correct
tinuum limit. The dotted line is the lattice-based analytic prediction.Multiplicative factor does not amount to simply averaging
over the directions for a straight string: in the lattice simula-
both the monopole and antimonopole are removed from théions there is residual small-scale structure along the strings
simulation. Thus, in our final configuration, all remaining and probably an accompanying distribution of tiny logps
monopoles are separated from antimonopoles by a minimurarder the lattice spacingThese effects change the multipli-
distance ofr ,. We have fixed the smoothing length and cative factor from 1.5(its value when only anisotropy is
calculated the monopoteantimonopole number density taken into accountto 1.91, but they should not affect the
(N/V) as a function of the annihilation distancg. The length distribution of loopgexcept for the smallest loopdn
results are shown in Figs. 8 and 9 for smoothing lengths of Gractice, nearly all previous studies of cosmic strings have
and 8 lattice spacings, respectively. The monopole densityised a simple lattice simulation of the kind described here
(N/V)rg decreases as a functionrgf, and it must obviously [2-8], as have some monopole simulatidiis] (although
go to zero as 5 reaches the size of the simulation volume. see Ref[14] for a continuum field treatment of monopales
However, it appears that as, approaches,, a plateau For cosmic strings and monopoles, the problem can be
value for (N/V)rg is reached. Moreover, the plateau value ofsolved by linearly interpolating the values of the field on the
(N/V)rg lies at the continuum prediction of Eggl3). The  lattice. This procedure yields the correct continuum value for
statistics are rather poor, but our results do suggest that or{e€ monopole and string densities; for the case of monopoles,
interpetation of the spurious monopoles in the lattice simu@ similar result can be achieved in a simple minded lattice

lations is that such monopoles are produced as closel§imulation by eliminating close pairs of monopoles. For the
spaced monopole-antimonopole pairs. case of cosmic strings, this interpolation scheme produces a

truly lattice-free estimate of the total string length in the
form of infinite strings:f,=0.716-0.015. This is nearly
identical to the value obtained from a simple lattice simula-
Our results indicate that lattice simulations for the forma-tion (with Gaussian smoothingvhere the strings were con-
tion of topological defects must be used with some cautionstrained to lie on the edges of the latt{@. Apparentlyf., is
Even when the Gaussian fields used in these simulations areuch less sensitive to lattice effects than is the total string
smoothed to reduce lattice effects on small scales, a residudensity. This is not surprising, since the effect of the cubic
lattice dependence remains. Another way to express this rdattice is to multiply the string density by a geometric factor;
sult is to note that smoothing eliminates the small-scale inif this factor is the same for both closed loops and infinite
homogeneity introduced by using a lattice, but it cannotstrings, therf., is unaffected. However, even in these lattice-
eliminate the anisotropy. Strings, for example, simulated orfree simulations, we expect the valuefgfto depend on the
a cubic lattice are required to lie only in tlxey, or zdirec-  window function used for smoothin@s in referencg8)).
tions, while a genuine continuum simulation would allow an  This linear interpolation procedure can also be extended
arbitrary direction for the string segments. to domain walls, providing an alternative to the weighting
For the case of domain walls, a simple multiplicative fac-factor used in Refd.10-12. In practice, these two methods

IV. DISCUSSION
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should give nearly identical results for any domain wall string simulations. We are grateful to S. Larsson for helpful
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